Statyczna teoria pływów

ostatnia aktualizacja 18 maja 2021 "...If I were asked to tell what I mean by the Tides I should feel it exceedingly difficult to answer the question..."

Lord Kelvin, 1882

"...If I were asked to tell what I mean by the Tides I should feel it exceedingly difficult to answer the question..."

Lord Kelvin, 1882

- Wszelkie efekty powodowane przez ciała zewnętrzne
- Zjawiska powodowane przez masy ciał zewnętrznych
- Deformacje powodowane przez ciała zewnętrzne
- Efekty powodowane przez różnicowe grawitacyjne oddziaływanie ciał zewnętrznych

ODDYCHANIE ZIEMI

oceanservice.noaa.gov

homepage.oma.be/mvc

homepage.oma.be/mvc

homepage.oma.be/mvc

Mniej spektakularne, również ciekawe i ważne:

- pływy skorupy ziemskiej
 - zmiany wysokości
 - zmiany siły ciężkości
 - zmiany kierunku linii pionu
 - zmiany długości, powierzchni, objętości
- pływy atmosfery
- pływowe zmiany prędkości obrotowej Ziemi
- pływowe zmiany orientacji Ziemi
- perturbacje ssz
- "ciemna strona księżyca" i jego ucieczka
- efekty pośrednie pływów oceanicznych i atmosferycznych

trzęsienia Ziemi

. . .

$$\gamma_O = \frac{GM}{r^2}$$
$$\gamma_A = \frac{GM}{(r+R)^2}$$
$$\gamma_B = \frac{GM}{(r-R)^2}$$

$$\gamma_O = \frac{GM}{r^2}$$
$$\gamma_A \simeq \gamma_O - \gamma_O \cdot \frac{2R}{r}$$
$$\gamma_B \simeq \gamma_O + \gamma_O \cdot \frac{2R}{r}$$

$$\gamma_O = \frac{GM}{r^2}$$
$$\gamma_A \simeq \gamma_O - \boxed{\gamma_O \cdot \frac{2R}{r}} \sim \frac{M \cdot R}{r^3}$$
$$\gamma_B \simeq \gamma_O + \boxed{\gamma_O \cdot \frac{2R}{r}}$$

$$\gamma_O = \frac{GM}{r^2}$$
$$\gamma_A \simeq \gamma_O - \gamma_O \cdot \frac{2R}{r}$$
$$\gamma_B \simeq \gamma_O + \gamma_O \cdot \frac{2R}{r}$$

$$\gamma_O = \frac{GM}{r^2}$$
$$\gamma_A \simeq \gamma_O - \gamma_O \cdot \frac{2R}{r}$$
$$\gamma_B \simeq \gamma_O + \gamma_O \cdot \frac{2R}{r}$$

$$\gamma_v = \boxed{\frac{GM}{r^2}} \cdot \left(\boxed{\cos z} + \frac{R}{r} (3\cos^2 z - 1) \right)$$
$$\gamma_h = \boxed{\frac{GM}{r^2}} \cdot \left(\boxed{\sin z} + \frac{R}{r} (\frac{3}{2}\sin 2z) \right)$$

$$\gamma_v = \frac{GM}{r^2} \cdot \left(\cos z + \frac{R}{r} (3\cos^2 z - 1) \right)$$
$$\gamma_h = \frac{GM}{r^2} \cdot \left(\sin z + \frac{R}{r} (\frac{3}{2}\sin 2z) \right)$$

Siła wypadkowa — γ

$$Vp = V_{\mathbb{C}} + V_{\bigcirc} + V_{\bigcirc} + V_{\bigcirc} + V_{\bigcirc} + \cdots$$

- (1)
- $\odot 0,46$
- 9 0,00005
- 4 0,000006
- ♂ 0,000001

$$\begin{cases} V_2 = \frac{GmR^2}{r^3} (\frac{3}{2}\cos^2 z - \frac{1}{2}) \\ \cos z = \sin\varphi\sin\delta + \cos\varphi\cos\delta\cos(t) \\ V_2 = \frac{3}{4} \frac{GmR^2}{r^3} \cdot \left[3(\sin^2\varphi - \frac{1}{3})(\sin^2\delta - \frac{1}{3}) \\ +\sin 2\varphi\sin 2\delta\cos t \\ +\cos^2\varphi\cos^2\delta\cos 2t \end{cases}$$

$$\begin{cases} V_2 = \frac{GmR^2}{r^3} (\frac{3}{2}\cos^2 z - \frac{1}{2}) \\ \cos z = \sin\varphi\sin\delta + \cos\varphi\cos\delta\cos(t) \end{cases}$$
$$V_2 = \frac{3}{4} \frac{GmR^2}{r^3} \cdot \left[3(\sin^2\varphi - \frac{1}{3})(\sin^2\delta - \frac{1}{3}) \right]^{\text{wyraz strefowy}}_{\text{pływy długookresowe}} \\ + \sin 2\varphi\sin 2\delta\cos t \\ + \cos^2\varphi\cos^2\delta\cos 2t \right]$$

$$\begin{cases} V_2 = \frac{GmR^2}{r^3} (\frac{3}{2}\cos^2 z - \frac{1}{2}) \\ \cos z = \sin \varphi \sin \delta + \cos \varphi \cos \delta \cos(t) \end{cases}$$
$$V_2 = \frac{3}{4} \frac{GmR^2}{r^3} \cdot \left[3(\sin^2 \varphi - \frac{1}{3})(\sin^2 \delta - \frac{1}{3}) + \sin 2\varphi \sin 2\delta \cos t \right]^{\text{wyraz tesseralny}}_{\text{phywy dobowe}}$$
$$+ \cos^2 \varphi \cos^2 \delta \cos 2t$$

]

$$\begin{cases} V_2 = \frac{GmR^2}{r^3} (\frac{3}{2}\cos^2 z - \frac{1}{2}) \\ \cos z = \sin\varphi\sin\delta + \cos\varphi\cos\delta\cos(t) \end{cases}$$
$$V_2 = \frac{3}{4} \frac{GmR^2}{r^3} \cdot \left[3(\sin^2\varphi - \frac{1}{3})(\sin^2\delta - \frac{1}{3}) + \sin 2\varphi\sin 2\delta\cos t \right]$$
$$+ \cos^2\varphi\cos^2\delta\cos 2t \qquad \text{wyraz sektorowy}$$

Laplace

$$V = \frac{Gm}{r} \sum_{n=2}^{\infty} \left(\frac{R}{r}\right)^n f(\varphi, \delta, t)$$

 $\dot{\tau}$

ġ

Doodson

$$= \sum A(K_{1-6}, R, \varphi) \sin \left\{ (a_1 \dot{\tau} + a_2 \dot{s} + a_3 \dot{h} + a_4 \dot{p} + a_5 \dot{N'} + a_6 \dot{p_s}) t \right\}$$

24,833	h	średni	czas	księżycowy
--------	---	--------	------	------------

- 27,3 d średnia długość Księżyca
- $\dot{s} \dot{h}$ 365,25 d średnia długość Słońca
 - 8.8 lat średnia długość perigeum orbity Księżyca
 - 18,6 lat średnia długość węzła wstępującego orbity Księżyca
- $\dot{p_s}$ 20942 lat średnia długość perigeum orbity Słońca

Wykaz 1: fragment katalog potencjału pływowego

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	0	0	0	0	0.00000000-	-8695028819.	0.	M0S0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	0	0	0	0	0	0.00000000	395037.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	0	0	1	0	0.00220641	771912590.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	0	0	0	0	1	0	0.00220641	-307251.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	0	0	1	$^{-1}$	0	0.00243541	0.	267094.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	0	0	2	0	0.00441281	-7537749.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	0	0	1	0	0	0.00464181	0.	-5631229.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	0	0	1	1	0	0.00684822	0.	-868055.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	0	2	1	0	0.01149003	1177773.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	1	0	$^{-1}$	$^{-1}$	0.03886027	-1177773.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	1	0	0	$^{-1}$	0.04106668	-136150588.	0.	SA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	1	0	0	1	0.04107060	7066640.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	1	0	1	$^{-1}$	0.04327309	1177773.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	2	-2	$^{-1}$	0	0.07064725	588887.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	2	-2	0	0	0.07285365	-8597745.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	2	-2	1	0	0.07506006	706664.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	0	0	2	$^{-1}$	0	0	0.07749547	0.	-1068375.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	2	0	0	-2	0.08213336	-3179988.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	2	0	0	0	0.08213728	-856594487.	0.	SSA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	2	0	1	0	0.08434369	21435473.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	2	0	2	0	0.08655009	4711093.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	3	0	0	$^{-1}$	0.12320396	-49937586.	0.	STA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	3	0	1	$^{-1}$	0.12541037	942219.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	0	4	0	0	-2	0.16427064	-2002215.	0.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0	1	0	$^{-1}$	1	0	0.54658111	63128646.	0.	
2 0 3 -1 -1 0 1 1.60134107 -3651097. 0. 3 2 4 0 -1 0 0 31.17552851 0. 1148504.	3	0	1	0	0	$^{-1}$	0	0.54681011	0.	5364135.	
3 2 4 0 -1 0 0 31.17552851 0. 1148504.	2	0	3	-1	$^{-1}$	0	1	1.60134107	-3651097.	0.	
	3	2	4	0	$^{-1}$	0	0	31.17552851	0.	1148504.	

Symbol	Okres	Pochodzenie
Pływy	długookreso	owe
M_0		Stały pływ księżycowy
S_0		Stały pływ słoneczny
S_a	365.25^{d}	Pływ eliptyczny S_0
S_{sa}	182.62^{d}	Pływ deklinacyjny S_0
M_m	27.55^{d}	Pływ eliptyczny M_0
M_f	13.66^{d}	Pływ deklinacyjny M_0
Pływy	dobowe	
O_1	$25^{h}49^{m}$	Główna fala księżycowa
P_1	$24^{h}04^{m}$	Główna fala słoneczna
K_1	$23^{h}56^{m}$	Fala deklinacyjna k-s
Pływy	pół-dobowe	
N_2	$12^{h}39^{m}$	Pływ eliptyczny M_2
M_2	$12^{h}25^{m}$	Główna fala księżycowa
S_2	$12^{h}00^{m}$	Główna fala słoneczna
Pływy	ter-dobowe	
M_3	$8^{h}17^{m}$	Główna fala księżycowa
		i wiele, wiele innych

 $\log V \left[m^2 \, \mathrm{s}^{-2} \right]$

100µGəl M2

100µGal

 O_1

