The estimation of **F**[®]**C**[®]**N**[®] period and quality factor from tidal gravity measurements at Józefosław, Poland

Abstract

In this paper we investigate in determination of free core nutation period (FCN) and quality factor from gravity measurements. This study is based on 3.5 year gravity records collected with use of LaCoste&Romberg Earth Tide gravimeter no. 26 located in Józefosław Observatory near Warsaw, Poland. We investigated in diurnal tidal gravity waves which are affected by fluid core resonance. From the enhancements of gravimetric factors and phases the eigenperiod of free core nutation was inferred to be equal to 430 sidereal days. This result is in good accordance with previous determination using gravimetric and VLBI techniques and confirms the discrepancy of the dynamic flattening of the outer core from its theoretical value for hydrostatic assumption. The value of quality factor (ca. 1300) is less than those obtained using VLBI which lead us to already reported conclusion that gravity measurements are more sensitive to site dependent phenomena (like atmospheric and indirect ocean tidal effects) than VLBI. In order to evaluate this phenomena correctly we investigated also in the importance of environmental correction for gravity measurements and their influence on determined FCN period.

Table: Tidal analysis results (diurnal band)												
			NC				PC				PC+OTLC	
	$f\left[^{\circ}/h ight]$	$A_{th}\left[rac{nm}{s^2} ight]$	δ	m_δ	$arphi\left[^{\circ} ight]$	$m_arphi\left[^\circ ight]$	δ	m_δ	$arphi\left[^{\circ} ight]$	$m_arphi\left[^\circ ight]$	δ	arphi
$oldsymbol{Q}_1$	13.399	57.7	1.1477	0.0017	-0.0870	0.0840	1.1481	0.0008	-0.0660	0.0410	1.1546	0.0085
O_1	13.943	301.3	1.1504	0.0003	0.0720	0.0160	1.1504	0.0002	0.0930	0.0080	1.1541	-0.0498
M_1	14.497	23.7	1.1423	0.0042	0.1280	0.2120	1.1519	0.0021	0.1120	0.1040	1.1531	-0.0803
π_1	14.918	8.2	1.1436	0.0116	0.3290	0.5800	1.1632	0.0058	-0.0420	0.2860	1.1628	-0.1637
P_1	14.959	140.2	1.1487	0.0007	0.2350	0.0340	1.1483	0.0003	0.1100	0.0170	1.1478	0.0068
$old S_1$	15.000	3.3	1.0835	0.0364	-11.8850	1.9270	1.1767	0.0201	-6.4250	0.9750	1.1763	-6.5248
K_1	15.041	423.6	1.1360	0.0002	0.1330	0.0100	1.1359	0.0001	0.0950	0.0050	1.1352	-0.0001
ψ_1	15.082	3.3	1.2799	0.0258	2.1780	1.1550	1.2682	0.0134	2.2900	0.6060	1.2673	2.2255
$arphi_1$	15.123	6.0	1.1746	0.0159	-0.4040	0.7780	1.1704	0.0080	-0.9310	0.3940	1.1694	-0.9899
J_1	15.585	23.7	1.1584	0.0029	0.0040	0.1450	1.1573	0.0014	0.0330	0.0720	1.1550	0.2339
OO_1	16.139	13.0	1.1521	0.0039	-0.3670	0.1960	1.1520	0.0020	0.0110	0.0980	1.1485	0.6568

Tidal analysis results

Figure: Comparison of gravimetric factors for diurnal tidal waves. The results when no correction (NC), pressure correction (PC) and ocean tidal loading correction (OTLC) was applied are shown along with theoretical models of Dehant, Defraigne, Wahr (DDW) and Matthews (MAT).

Figure: Resonance curve fitted to gravimetric factors

Figure: Monte Carlo simulation of results

FCN parameters determination

Table: Comparison of FCN period determination using different strategies									
	T [SD] A	$r [\cdot 10^4]$	$h \cdot deg^{-1}]$	$T~[SD]~A_r~[\cdot 10^4~h\cdot deg^{-1}]$					
Solution	$M_1,\;\pi_1$	$_{1},\;K_{1},\psi$	$\psi_1, \ arphi_1, \ J_1$	$M_1,\ \pi_1,\ P_1$	$_{1},\ K_{1},\psi$	$\phi_1,~arphi_1,~J_1$			
NC	408.3 (396.5 – 420.9)	5.47	(± 0.20)	412.0 (391.5 – 434.7)	5.40	(± 0.32)			
PC	413.2 (402.0 - 425.0)	5.45	(± 0.17)	418.0 (397.1 – 441.3)	5.37	(± 0.31)			
OTLC	423.2 (407.0 - 440.7)	6.87	(± 0.30)	421.4 (407.0 - 436.8)	6.90	(± 0.27)			
PC+OTLC	430.2 (421.4 – 439.5)	6.80	(± 0.15)	426.0 (414.1 - 438.6)	6.88	(± 0.21)			
Solution		F	$K_1,\psi_1, \ arphi_1$	$P_1,\ K_1,\psi_1,\ arphi_1$					
NC	408.5 (401.7 - 415.5)	5.47	(± 0.11)	412.3 (385.8 - 442.6)	5.39	(土0.42)			
PC	413.2 (407.9 - 418.7)	5.45	(± 0.08)	418.1 (390.8 – 449.6)	5.37	(± 0.41)			
OTLC	423.4 (419.9 – 426.9)	6.86	(± 0.06)	421.5 (412.9 - 430.5)	6.90	(± 0.16)			
PC+OTLC	430.0 (429.8 – 430.2)	6.80	(± 0.00)	425.8 (410.6 – 442.2)	6.88	(± 0.27)			

Figure: Comparison of FCN period determination from different studies

Mathematical background

Conclusions

- signals.

Acknowledgements

Marcin Rajner[†] Aleksander Brzeziński^{†‡}

Figure: Q estimation with Bayesian method

Despite of high background noise we confirmed the usefulness of spring gravimeters for capturing small amplitude

The estimated period is in very good agreement with previous studies while quality factor is at least one order smaller then those from VLBI or stacking multiple gravity measurements. Removing environmental signals is crucial in this studies.

This research is partially supported by polish National Science Centre (DEC-2011/01/N/ST10/07710)

EGU2012-1425 XL123 G5.1 Vienna, 22 – 27 April, 2012