

Detection of regional ice mass variation using GNSS measurements at Svalbard

Marcin Rajner Warsaw University of Technology marcin.rajner@pw.edu.pl

Michał Pętlicki Institute of Geophysics PAS

5th September, 2017 IAG Workshop on Glacial Isostatic Adjustment and Elastic Deformation, September, 5–7, Reykjavik, Iceland Introduction GNSS

GIA

Loading

Model vs observation

Regional loading discrimination

Svalbard

Introduction Location of Svalbard Archipelago GNSS GIA Loading Model vs observation Regional loading discrimination

Svalbard

distances to other land, ice masses

Introduction Location of Svalbard Archipelago GNSS GIA Loading Model vs observation **Regional loading** discrimination Conclusions

GNSS sites

Area of $61\cdot 10^3\,\text{km}^2$

GNSS sites

80°

Area of $61\cdot 10^3\,\text{km}^2$

60 % covered with ice (glaciers, ice fields, ice caps)

Ny-Ålesund GNSS, VLBI, DORIS, SG, AG GIA and PDIM studies

Hornsund

20°

Polish Polar Station (77.00 $^\circ N$ 15.50 $^\circ E) GNSS since 2005/2006$

38 nyal nya1 79° 78° 77° horn 10° 20°

GNSS time series – height change

GNSS time series – height change

rates in mm/yr

GIA uplift rates

Introduction GNSS GIA Loading Model vs observation Regional loading discrimination Conclusions

GIA uplift rates

Introduction GNSS GIA Loading Model vs observation Regional loading discrimination Conclusions

Realistic mass balance model

Mass balance – loading modelling

Mass balance – loading modelling

no	area [km²]	glac. [%]
1	7	71
2	7	35
3	14	53
4	12	74
5	6	41
6	15	71
total	61	60
A DUCTUSUUS		

Regional loading discrimination

contribution of selected areas in total load signal nyal

horn

Introduction

GNSS

GIA

Loading

Model vs observation

Regional loading discrimination

Regional loading discrimination

contribution of selected areas in total load signal nyal

assuming uniform mass loss over glaciated area

using realistic MB model

Introduction

GNSS

GIA

Loading

Model vs observation

Regional loading discrimination

Regional loading discrimination

contribution of selected areas in total load signal nval

assuming uniform mass loss over

the explanation of recent **increase of uplift** rate for nyal and horn station require **additional** melting of **3.1 Gt/yr** with higher melting rate for **north west** Spitsbergen

[relative to the MB model for Svalbard - Aas et al., 2016]

using realistic MB model

Introduction

GNSS

GIA

Loading

Model vs observation

Regional loading discrimination

Conclusions

厉 We presented,

- new results from horn GNSS site
- update of the uplift rate for nyal and nya1 GNSS site
- recent acceleration of uplift rates for Svalbard as the result of increased melting
- differences of uplift rates for horn and nyal sites points out regional (north west/south west) melting differences
 uncertainties in models of uplift components

🐆 We consider,

AG measurements in Hornsund

Thank youWe acknowledge all geoscience datafor attentionand products providers

Introduction

GNSS

GIA

Loading

Model vs observation

Regional loading discrimination

Conclusions

10

Detection of regional ice mass variation using GNSS measurements at Svalbard

backup slides

5th September, 2017 IAG Workshop on Glacial Isostatic Adjustment and Elastic Deformation, September, 5–7, Reykjavik, Iceland

11

References

```
۲
    (2017). URL: ftp://podaac-
    ftp.jpl.nasa.gov/allData/tellus/L3/pgr/.
(2017). URL: http://segal.ubi.pt/hector/
    (visited on 02/25/2017).
A, G., J. Wahr, and S. Zhong (2013). "Computations
    of the viscoelastic response of a 3-D compressible Earth
    to surface loading: an application to Glacial Isostatic
    Adjustment in Antarctica and Canada". Geophysical
    Journal International 192.2, pp. 557-572.
    Aas, K. S., T. Dunse, E. Collier, T. V. Schuler,
T. K. Berntsen, J. Kohler, and B. Luks (2016). "The
    climatic mass balance of Svalbard glaciers: a 10-year
    simulation with a coupled atmosphere-glacier mass
    balance model". The Cryosphere 10.3, pp. 1089–1104.
```

References

References

(cont.)

Forman, S., D. Lubinski, Ó. Ingólfsson, J. Zeeberg, J. Snyder, M. Siegert, and G. Matishov (2004). "A review of postglacial emergence on Svalbard, Franz Josef Land and Novaya Zemlya, northern Eurasia". *Quaternary Science Reviews* 23.11. Quaternary Environments of the Eurasian North (QUEEN), pp. 1391–1434.

Mémin, A., G. Spada, J.-P. Boy, Y. Rogister, and J. Hinderer (2014). "Decadal geodetic variations in Ny-Ålesund (Svalbard): role of past and present ice-mass changes". *Geophysical Journal International* 198, pp. 285–297.

Paulson, A., S. Zhong, and J. Wahr (2007). "Inference of mantle viscosity from GRACE and relative sea level data". *Geophysical Journal International* 171.2, pp. 497–508. References