

Dynamika lodowców na Svalbardzie badana z pomocą obserwacji GNSS

Marcin Rajner Politechnika Warszawska marcin.rajner@pw.edu.pl seminarium ZGP—KGiAG 23.10.2020

Wyjaśnienie do tytułu

Svalbard

Svalbard

Odległości do innych lądów, mas lodowych

Powierzchnia $61 \cdot 10^3 \, \text{km}^2$

Svalbard

Powierzchnia $61 \cdot 10^3 \, \text{km}^2$

Svalbard

Svalbard

Powierzchnia $61 \cdot 10^3 \, \text{km}^2$

60 % lądu pokryte lodem (lodowce, pola lodowe, czapy lodowe)

Początki stacji permanentnej

المع المع الم

Początki stacji permanentnej

Szeregi czasowe GNSS – zmiany wysokości

Szeregi czasowe GNSS – zmiany wysokości

trend w mm/rok

Szeregi czasowe GNSS – zmiany wysokości trend w mm/rok

Szeregi czasowe GNSS – zmiany wysokości trend w mm/rok

GIA – wypiętrzanie

GIA – wypiętrzanie

Realistyczny model bilansu masy

Bilans masy – efekt obciążeniowy

Bilans masy – efekt obciążeniowy

Porównanie wartości modelowych z obserwacjami 10° 20° nyal [mm/rok] 8.7 GNSS 2010-12 — present 6.4 GNSS 80° 79° horn [mm/rok] 8.9 GNSS 2010-12 — present 78° 6.6 GNSS 77° 10° 20°

Porównanie wartości modelowych z obserwacjami 10° 20° nyal [mm/rok] 8.7 GNSS 2010-12 — present 6.4 GNSS 2004-07 — 2010-12 80° 79° 0.5 GIA horn [mm/rok] 8.9 GNSS 2010-12 — present 78° 6.6 GNSS 2004-07 — 2010-12 77° 1.1 GIA 10° 20°

Porównanie wartości modelowych z obserwacjami 10° 20° nyal [mm/rok] 8.7 GNSS 2010-12 — present 6.4 GNSS 2004-07 — 2010-12 80° 2.3 PDIM 79° 0.5 GIA horn [mm/rok] 8.9 GNSS 2010-12 - present 78° 6.6 GNSS 2004-07 — 2010-12 77° 2.1 PDIM 1.1 GIA 10° 20°

Porównanie wartości modelowych z obserwacjami 10° 20° nyal [mm/rok] 8.7 GNSS 4.0 CIASS Memin et al.²⁰2014² 80° 0.3 Gr. 2.3 PDIM 79° 0.5 GIA horn [mm/rok] 8.9 GNSS 2010-12 — present 78° 4.0 GIASS Memin7et_al2020142 0.3 Gr. 77° 2.1 PDIM 1.1 GIA 10° 20°

Porównanie wartości modelowych z obserwacjami

Nasze ostatnie dokonania

Regionalny wpływ efektów obciążeniowych

Regionalny wpływ efektów obciążeniowych

wpływ regionów na sygnał całkowity nyal

horn

Regionalny wpływ efektów obciążeniowych

wpływ regionów na sygnał całkowity nyal

zagładając równomierną utratę masy na obszarach zlodowaciałych

używając realistycznego modelu MB

Szeregi czasowe GNSS

zmiana odległości horn-nyal

Wnioski

厉 Podsumowując

- nowe wyniki ze stacji GNSS horn
- współczesne przyspieszenie wypiętrzania stacji GNSS jest efektem obecnego zwiększenia tempa topnienia lodowców,
- różnice pomiędzy wynikami różnych stacji GNSS na Svalbardzie mogą służyć do regionalnego badania bilansu masy,

Wnioski

厉 Podsumowując

- nowe wyniki ze stacji GNSS horn
- współczesne przyspieszenie wypiętrzania stacji GNSS jest efektem obecnego zwiększenia tempa topnienia lodowców,
- różnice pomiędzy wynikami różnych stacji GNSS na Svalbardzie mogą służyć do regionalnego badania bilansu masy,

浾 Co dalej?

- badania dotyczące zmian współrzędnych horyzontalnych,
- udział stacji horn w EPN/IGS,
- pomiary AG w Hornsundzie,
- liczne zastosowania obserwacji GNSS w badaniach geodynamicznych i środowiskowych.

Wnioski

厉 Podsumowując

- nowe wyniki ze stacji GNSS horn
- współczesne przyspieszenie wypiętrzania stacji GNSS jest efektem obecnego zwiększenia tempa topnienia lodowców,
- różnice pomiędzy wynikami różnych stacji GNSS na Svalbardzie mogą służyć do regionalnego badania bilansu masy,

浾 Co dalej?

- badania dotyczące zmian współrzędnych horyzontalnych,
- udział stacji horn w EPN/IGS,
- pomiary AG w Hornsundzie,
- liczne zastosowania obserwacji GNSS w badaniach geodynamicznych i środowiskowych.

Podziękowania dla wszystkich uczestników omawianych prac