Modelowanie stochastyczne obserwacji multi-GNSS na potrzeby pozycjonowania kinematycznego

POLITECHNIKA WARSZAWSKA

Dominik Próchniewicz, Kinga Węzka, Joanna Kożuchowska

Wydział Geodezji i Kartografii Politechnika Warszawska

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju Grybów, 8–10.06.2022

"*Modelowanie stochastyczne obserwacji GNSS na potrzeby precyzyjnego pozycjonowania kinematycznego*", Narodowe Centrum Nauki (SONATA 12 nr 2016/23/D/ST10/00498, 2017–2021)

Głównym celem projektu badawczego jest rozszerzenie istniejącej wiedzy w zakresie modelowania stochastycznego obserwacji GNSS oraz stworzenie nowych metod i algorytmów umożliwiających definicję precyzyjnych modeli stochastycznych indywidualnych dla danego zestawu pomiarowego, środowiska pomiarowego czy danej aplikacji pozycjonowania.

Głównym wnioskiem płynącym z badań jest określenie jak precyzyjnie i jakimi metodami należny modelować obserwacje GNSS oraz w jaki sposób w zależności od danej aplikacji/techniki pozycjonowania należy te modele włączać do matematycznego modelu opracowania obserwacji, aby podnieść dokładność i wiarygodność wyznaczenia pozycji.

Szum termiczny obserwacji GNSS

abela 1. Dudzet elektywnego szumu termicznego Gr 5 C/A , $e = e$					
Komponent	Wartość				
Min. moc sygnału trans.	$14.3\mathrm{dBW}$				
Path loss	$-159.0\mathrm{dB/m^2}$				
Wzmocnienie anteny sat.	$12.4\mathrm{dB}$				
Tłumienie atmosfery	$2.0\mathrm{dB}$				
Wzmocnienie anteny sat.	$-27.4\mathrm{dBm^2}$				
Moc sygnału	$-161.8\mathrm{dBW}$				
Moc szumu	$-141.0\mathrm{dBW}$				
Noise power density	$-204.0\mathrm{dBW/Hz}$				
SNR (Signal-to-Noise Ratio)	$-20.8\mathrm{dB}$				
${\sf C}/{\sf N}_0$ (Carrier-to-Noise Density Ratio)	$42.2\mathrm{dB-Hz}$				

Tabela 1: Budżet efektywnego szumu termicznego GPS C/A, $e=5^{\circ}$

Teoretyczna moc sygnału GNSS

CARRIER-TO-NOISE DENSITY RATIO

Rysunek 1: C/N_0 dla teoretycznej minimalnej mocy odbioru sygnału

Błędy śledzenia sygnału GNSS

 Teoretyczny szum termiczny obserwacji może być obliczony jako błąd śledzenia sygnału w pętlach *Delay Lock Loops* (DLL) — dla obserwacji kodowych i *Phase Lock Loops* (PLL) – dla śledzenia fazy fali nośnej, jako:

$$\begin{split} \sigma_C^2 &= \frac{B_{\rm DLL} d}{2 {\rm C/N}_0} \left(1 + \frac{1}{t_{\rm DLL} {\rm C/N}_0}\right) \quad [{\rm PRN \ chip}^2] \\ \sigma_L^2 &= \frac{B_{\rm PLL}}{{\rm C/N}_0} \left(1 + \frac{1}{2t_{\rm PLL} {\rm C/N}_0}\right) \quad [{\rm rad}^2] \end{split}$$

• Dla odbiornika Septentrio PolaRx5:

 $B_{\rm DLL} = 0.25 \,\text{Hz}$: szerokość pasma pętli DLL; $B_{\rm PLL} = 15 \,\text{Hz}$: szerokość pasma pętli PLL; $t_{\rm DLL} = 0.10 \,\text{s}$: predetection time pętli DLL; $t_{\rm PLL} = 0.01 \,\text{s}$: predetection time pętli PLL; $d = 0.1 \,\text{Hz}$: odstęp korelatora;

Teoretyczny szum termiczny obserwacji GNSS

Rysunek 2: Teoretyczne błędy śledzenia kodu i fazy, Septentrio PolaRx5

Modelowanie stochastyczne obserwacji GNSS

- **Cel**: opracowanie indywidualnego, empirycznego modelu stochastycznego obserwacji wielosystemowych GNSS w postaci pełnej macierzy wariancyjno-kowariancyjna obserwacji kodowych i fazowych;
- Modele empiryczne:
 - 1. model wariancji obserwacji;
 - 2. model kowariancji wzajemnej obserwacji;
 - 3. model korelacji czasowej obserwacji.
- Oszacowanie szumu pomiarowego dla zestawu pomiarowego (odbiornik GNSS + antena) możliwe jest przy łącznym opracowaniu obserwacji z wektora zerowego (ZB) i bardzo krótkiego wektora (SB);
- Bazuje na podwójnych (DD) i potrójnych (TD) różnicach obserwacji wymaga odbiornika referencyjnego lub założenia jednakowych wartości dla dwóch odbiorników;

Kombinacje obserwacji wykorzystane w modelowaniu stochastycznym (De Bakker et al., 2009, 2012):

Nr	Obs.	$E\{\cdot\}$	$D\{\cdot\}$	Uwagi
(i) (ii)	SB:DD SB:TD	$ \begin{array}{l} \nabla \Delta mp \\ \Delta \nabla \Delta mp \approx 0 \end{array} $	$\frac{4\sigma^2}{8(1-\rho_t)\sigma^2}$	(+) wielodrożność (-) korelacja czasowa
(iii) (iv)	ZB:DD ZB:TD	0 0	$4(1-\rho_{\Delta})\sigma^2$ $8(1-\rho_t)(1-\rho_{\Delta})\sigma^2$	(-) wspólny szum anteny (-) korelacja czasowa (-) wspólny szum anteny

Tabela 2: Wartość oczekiwana i dyspersja kombinacji obserwacji

Wyznaczenie empirycznego modelu wariancji obserwacji:

• Funkcja wariancji obserwacji $\sigma = f(C/N_0)$:

Błąd śledzenia pętli DLL i PLL: $\sigma^2 = a_1 \cdot C/N_0^{-1} + a_2 \cdot C/N_0^{-2};$ C/N_0 [ratio-Hz] $\sigma = a_1 \cdot 10^{-C/N_0/20} + a_2 \cdot 10^{-C/N_0/10};$ C/N_0 [dB-Hz] Zastosowania funkcja: $\sigma = \sum_{i=1}^n a_i \cdot 10^{(1-i)C/N_0/40};$ n = 4

- Odchylenie standardowe: segmenty 120 s.
- Modele indywidualne dla każdego systemu/sygnału/bloku.

Modelowanie stochastyczne obserwacji GNSS

Rysunek 3: C/N₀ dla sygnałów:bloków satelitów

Model wariancji obserwacji fazowych Galileo

Rysunek 4: Model wariancji Galileo:L, SB:TD, Septentrio PolaRx, 2018:168 Modelowanie stochastyczne obserwacji multi-GNSS na potrzeby pozycjonowania kinematycznego

Model wariancji obserwacji kodowych Galileo

Rysunek 5: Model wariancji Galileo:P, SB:TD, Septentrio PolaRx, 2018:168 Modelowanie stochastyczne obserwacji multi-GNSS na potrzeby pozycjonowania kinematycznego

Model wariancji obserwacji fazowych BeiDou

Rysunek 6: Model wariancji BeiDou:L, SB:TD, Septentrio PolaRx, 2018:168 Modelowanie stochastyczne obserwacji multi-GNSS na potrzeby pozycjonowania kinematycznego

Model wariancji obserwacji kodowych BeiDou

Rysunek 7: Model wariancji BeiDou:P, SB:TD, Septentrio PolaRx, 2018:168 Modelowanie stochastyczne obserwacji multi-GNSS na potrzeby pozycjonowania kinematycznego

Korelacja wzajemna obserwacji

Rysunek 8: Współczynnik korelacji wzajemnej: GPS (lewy), GLONASS (prawy), Septentrio PolaRx, 2018:168-174

Korelacja wzajemna obserwacji

Rysunek 9: Współczynnik korelacji wzajemnej: Galileo (lewy), BeiDou (prawy), Septentrio PolaRx, 2018:168-174

Korelacja czasowa obserwacji kodowych Galileo

Rysunek 10: Znormalizowana funkcja autokorelacji Galileo:P, ZB:DD, Septentrio PolaRx, 2017:337

Korelacja czasowa obserwacji fazowych Galileo

Rysunek 11: Znormalizowana funkcja autokorelacji Galileo:L, ZB:DD, Septentrio PolaRx, 2017:337

Dane pomiarowe

Wektor zerowy i krótki wektor:

- Odbiorniki: 2×Septentrio PolaRx5, anteny: Leica Choke-Ring AT504/Septentrio PolaNt ChokeRing B3/E6;
- **Obserwacje:** model: WUT1: 2017/337-343, WUT1-WUT2: 2018:168-174, interwał: 1 sek.; maska: 0°; pozycjonowanie: WUT1-WUT2: 2018:180;
- **Produkty:** efemerydy precyzyjne CODE MGEX: G+R+E+C;

Empiryczny szum obserwacji kodowych GNSS

Rysunek 12: Empiryczne i teoretyczne błędy śledzenia kodu dla minimalnej mocy odbioru sygnału, Septentrio PolaRx5

Empiryczny szum obserwacji fazowych GNSS

Rysunek 13: Empiryczne i teoretyczne błędy śledzenia fazy dla minimalnej mocy odbioru sygnału, Septentrio PolaRx5

Model pozycjonowania:

- Model: DD Iono/Tropo-Fixed;
- Obserwacje: G, R, G+E, G+C, GREC;
- Rozwiązanie kinematyczne: Zmodyfikowany Filtr Kalmana (Petovello et al., 2009);
- Reset EFK: $N_{sys} < 6$;
- Interwał: 1sek.;
- Maska: a. 5° ; b. C/N₀: 30-35 dB-Hz;

Model stochastyczny:

• a. $\sigma = 0.003 + \frac{0.002}{\sin{(e)}}$ m; $\sigma_P = 100\sigma_L$;

• b.
$$\sigma = f(C/N_0);$$

- Indywidualne dla bloku;
- Korelacja wzajemna + czasowa;

Rozwiązanie nieoznaczoności:

- Metoda LAMBDA
- Tryb: continuous
- Walidacja: P > 0.99;

Obserwacje	Model stochastyczny		Nieoznaczoność		Dokładność [mm]				
$GNSS^1$	$Model^{2,3}$	Cross	Time	P succ.[%]	FA/FR.	rms(ne)	rms(u)	e < 5	$\max(e)$
GREC	Elev.	_	-	98.2(1567)	1352/0	2.5	6.8	24.2%	21.0
GREC	SNR(G)	-	-	100(0)	0/0	1.9	5.3	49.4%	15.9
GREC	Elev.	\checkmark	-	98.4(1423)	1232/0	2.5	6.5	30.7%	19.7
GREC	SNR(G)	\checkmark	-	100(0)	0/0	1.9	4.7	60.8%	14.9
GREC	Elev.	\checkmark	\checkmark	99.7(1145)	988/0	2.3	6.3	33.8%	19.7
GREC	SNR(G)	\checkmark	\checkmark	100(0)	0/0	1.9	4.8	60.6%	15.2
GREC	SNR(b)	\checkmark	\checkmark	100(0)	0/0	1.9	4.7	61.4%	15.2

 ${}^{1}G(-5)R(-3)E(-5)C;$ ${}^{2}(G)$ - GEO satellite; ${}^{3}(b)$ - block type;

Wyniki pozycjonowania

Rysunek 14: Błędy wyznaczenia pozycji dla modeli stochastycznych, SB, Septentrio PolaRx, 2018:180

Eksperyment kinematyczny

- Odbiorniki: Base/Rover Trimble R9s + Zephyr Geodetic Model 2;
- Obserwacje: G:1C/2L/2W/5Q, R:1C/1P/2C/2P, E:1C/5Q/7Q/8Q, C:2I/7I;
- Pomiar: Trasa 7.5 km, kąt maski 10°, interwał 1s., epok 1325;
- Model: instantaneous, EKF, SNR(G)+C. vs. Elev.;

Eksperyment kinematyczny

Modelowanie stochastyczne obserwacji multi-GNSS na potrzeby pozycjonowania kinematycznego

Podsumowanie i wnioski

- Empiryczny model szumu umożliwia precyzyjną definicję modelu stochastycznego obserwacji GNSS;
- Model empiryczny podnosi dokładność i niezawodność rozwiązania modelu pozycjonowania, zwłaszcza w przypadku pozycjonowania wykorzystującego obserwacje GPS, GLONASS oraz BeiDou;
- Największą dokładnością charakteryzuje się rozwiązanie GREC oraz GPS+Galileo wykorzystujące model empiryczny indywidualny dla bloków satelitów;
- Uwzględnienie w modelu stochastycznym zależnym od elewacji satelity korelacji czasowej obserwacji podnosi dokładność rozwiązania; dla modelu empirycznego wzrost dokładności jest nieznaczny.
- Przedstawiona metodyka oszacowania szumu pomiarowego zestawu GNSS (wraz z błędami systematycznymi odbiornika i anteny) może stanowić jeden z elementów kontroli metrologicznej instrumentów GNSS.

Publikacje

- Próchniewicz, D., Węzka, K. & Kożuchowska, J. (2021). Empirical Stochastic Model of Multi-GNSS Measurements. Sensors (100 pkt, IF: 3.576 2020); 2021:21(13), pp.4566. doi:10.3390/s21134566
- Próchniewicz, D. & Grzymała, M. (2021). Analysis of the Impact of Multipath on Galileo System Measurements. Remote Sensing (100 pkt, IF: 4.509 2019); 2021:13(12), pp.2295. doi:10.3390/rs13122295
- Kudrys, J., Prochniewicz, D., Zhang, F., Jakubiak, M. & Maciuk, K. (2021).
 Identification of BDS Satellite Clock Periodic Signals Based on Lomb-Scargle Power Spectrum and Continuous Wavelet Transform. Energies (140 pkt., IF:3.004 2020), 2021:14(21), pp. 7155; doi:10.3390/en14217155
- Próchniewicz, D., Kudrys, J. & Maciuk, K. (2022). Noises in Double-Differenced GNSS Observations. Energies (140 pkt., IF:3.004 2020), 2022:15(5), pp.1668; doi:10.3390/en15051668

Dziękuję za uwagę.

Dominik Próchniewicz

dominik.prochniewicz@pw.edu.pl

Praca została zrealizowana w ramach projektu Narodowego Centrum Nauki pt. "Modelowanie stochastyczne obserwacji GNSS na potrzeby precyzyjnego pozycjonowania kinematycznego" (2016/23/D/ST10/00498)