Konferencja naukowa

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju

WpływregionalnychzestawówstacjireferencyjnychGNSSnainterpretacjegeodynamiczne w Europie Środkowo-Wschodniej

Stepan SAWCZUK, Adam LYSZKOWICZ – *Lotnicza Akademia Wojskowa w D*ę*blinie*

Sofia DOSKICZ - Politechnika Lwowska

8–10 czerwca 2022 r.

Grybów

- W celu realizacji układu odniesienia należy wykonać specjalne obserwacje (pomiary) i połączyć je za pomocą wybranych modeli fizycznych z oszacowanymi parametrami, w tym współrzędnymi obiektów odniesienia: punktów na powierzchni Ziemi, kwazarów itp.
- W wyniku przetworzenia takich obserwacji uzyskuje się praktyczną realizację układu odniesienia.
- Proces ten ma charakter cykliczny, gdyż prowadzi do nowego etapu doskonalenia metod pomiary charakterystyk geodynamicznych, a także budowy bardziej zaawansowanych modeli teoretycznych badanych zjawisk.
- Porównując wyniki obserwacji z teorią (modelami) uzyskujemy nowe informacje o badanym zjawisku, które przez pewien czas mogą odpowiadać potrzebom nauki i praktyki.

Grybów

Opracowanie

Analiza

Uzyskiwania O — C. (różnice obserwowanych I obliczonych parametrów)

Zgodność obserwowanej pozycji z obliczoną świadczy o prawidłowości przeprowadzonych badań

Grybów

Jednym z kluczowych aspektów realizacji regionalnego układu odniesienia jest redukcja pola prędkości opartego na ITRF do tzw. stabilnej części kontynentu (płyta tektoniczna) za pomocą następującego zlinearyzowanego równania:

Wyniki

Analiza

Podsumowanie

Opracowanie

Dane

$$\mathbf{V}_{i}^{Eyy} = \mathbf{V}_{i}^{Iyy} + \begin{pmatrix} 0 & -\dot{R}\mathbf{3}_{YY} & \dot{R}\mathbf{2}_{YY} \\ \dot{R}\mathbf{3}_{YY} & 0 & -\dot{R}\mathbf{1}_{YY} \\ -\dot{R}\mathbf{2}_{YY} & \dot{R}\mathbf{1}_{YY} & 0 \end{pmatrix} \times \mathbf{X}_{YY}^{I}.$$

Jeżeli prędkości liniowe V_i^{Iyy} są wyznaczone instrumentalnie dla kilku punktów płyty, to położenie bieguna Eulera i prędkość kątową Ω można ustawić analitycznie:

$$\mathbf{V}_{i}^{Eyy} = \mathbf{\Omega} \times \mathbf{X}_{i} = \begin{bmatrix} 0 & -\omega_{Z} & \omega_{Y} \\ \omega_{Z} & 0 & -\omega_{X} \\ -\omega_{Y} & \omega_{X} & 0 \end{bmatrix} \times \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.$$

8–10 czerwca 2022 r.

Grybów

Motywacja

Analiza

Ocena parametrów bieguna Eulera w odniesieniu do płyty euroazjatyckiej w ITRF

Frame	Ф 0	۸ °	Ω (deg/My)	Ω (mas/y)	<i>Ř</i> 1 _{YY} (mas∕y)	<i>Ř</i> 2 _{YY} (mas/y)	₿3 _{YY} (mas/y)
ITRF2000	54.61	256.12	0.249	0.935	-0.081	-0.490	0.792
ITRF2005	56.33	264.02	0.261	0.939	-0.054	-0.518	0.781
ITRF2008	54.23	261.17	0.257	0.924	-0.083	-0.534	0.750
ITRF2014	54.20	260.05	0.261	0.939	-0.085	-0.531	0.770

Grybów

Dane

Motywacja

Opracowanie

Analiza

$$\mathbf{V}_{i}^{Eyy} = \mathbf{\Omega} \times \mathbf{X}_{i} = \begin{bmatrix} 0 & -\omega_{Z} & \omega_{Y} \\ \omega_{Z} & 0 & -\omega_{X} \\ -\omega_{Y} & \omega_{X} & 0 \end{bmatrix} \times \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.$$

Równanie to pokazuje prędkość V ruchu pewnego punktu *i*, znajdującego się na stałej części płyty tektonicznej 0 współrzędnych $\mathbf{X}_i = [X_i, Y_i, Z_i]^T$, względem prędkości kątowej $\boldsymbol{\Omega}$ bieguna Eulera. Takimi punktami naszych badań są permanentne (referencyjne) stacje GNSS wybrane według określonych kryteriów.

problemem związanym z dokładnością Głównym wyznaczania prędkości zestawu punktów sieci znajdujących się na fragmencie płyty tektonicznej nie jest wpływ rozrzutu błędów pomiarowych na wyniki wyrównywania, lecz określenie i kwantyfikacja kryteriów, według których zestaw takich punktów może zapewnić stabilne rozwiązanie niż inny zestaw punktów bazowych dla tej samej sieci. Grybów

8–10 czerwca 2022 r.

Grybów

Opracowanie

Wyniki

Analiza

- Do badań wykorzystano obserwacje GNSS z lat 2013-2017 z sieci EPN (23 stacje GNSS) oraz prywatne sieci stacji referencyjnych w Europie Środkowo-Wschodniej (149 stacji GNSS).
- Wybór takiego przedziału czasowego wynikał z faktu, że kiedyś prawie wszystkie te obserwacje zostały już przetworzone pięć lat temu (Savchuk S., Doskich, 2017), a teraz faktycznie przetworzyliśmy je ponownie.
- Celem tego ponownego przetwarzania było przejście do nowej realizacji ITRF2014, a także wykorzystanie nowych modeli i parametrów zaimplementowanych w oprogramowaniu.
- Główna część stacji GNSS należała do polskiej sieci VRSNet.pl (59 stacji) oraz ukraińskiej sieci ZAKPOS - (90 stacji).

Grybów

Analiza

Podsumowanie

Rozmieszczenie stacji GNSS

Grybów

Podsumowanie

 Dane GNSS za 5 lat (2013-2017) zostały przetworzone, a błędy oszacowane za pomocą oprogramowania GAMIT/GLOBK.

Opracowanie

Wyniki

Analiza

- Ten proces obliczeniowy składał się z dwóch etapów organizacyjnych.
- W pierwszym etapie GAMIT, który obejmuje metodę najmniejszych kwadratów, został wykorzystany do przetwarzania danych z obserwacji fazy w celu oszacowania trójwymiarowych współrzędnych względnych stacji naziemnych, orbit satelitów, opóźnień atmosferycznych w zenicie i parametrów orientacji Ziemi.
- W drugim etapie zastosowano globalny filtr Kalmana (GLOBK) do oszacowania sekwencyjnego zbioru współrzędnych stacji i ich prędkości, łącząc otrzymane w pierwszym etapie dobowe rozwiązania swobodne i ich kowariancje.

Opracowanie

Analiza

- W porównaniu do poprzedniego opracowania zastosowaliśmy następujące zmiany modeli i parametrów:
 - added grid tables for GPT3 model and set default (gpt.grid) to latest, highest-resolution file (gpt3_1.grd) from gpt2_5.grd.GG;
 - added IGRF13 magnetic field model and changed default from IGRF12 to IGRF13;
 - added ECOMC Radiation Model for ARC and changed default from BERNE to ECOMC;
 - added FES2014b ocean tide loading list file corresponding to all sites in igb14_comb.apr;
 - set Etide model to IERS10 and added UT1 Libration to Earth Rotation model;
 - implemented new Desai and Sibois diurnal/semidiurnal ocean tide EOP model;
 - updated to use DE405 (little-endian) file for 1900-2050 from JPL.
- Ponadto uwzględniono wiele drobnych usprawnień w algorytmach przetwarzania i wyeliminowano zidentyfikowane nieścisłości.

Grybów

Analiza

Podsumowanie

- W Gamit/Globk logika parametrów pozwala na użycie maksymalnie 99 stacji. Przy znacznej liczbie stacji większą wydajność osiąga się dzięki przetwarzaniu równoległemu z wykorzystaniem połączonych podsieci. W ten sposób sieć wejściowa, która obejmowała około 160 stacji, została podzielona na trzy połączone podsieci (zachodnią, wschodnią i środkową).
- Każda podsieć dynamiczna jest przetwarzana niezależnie za pomocą oprogramowania GAMIT. Rozwiązania trzech podsieci dobowych są łączone w jedno rozwiązanie dobowe (szacowane są tylko przesunięcie liniowe i rotacja) za pomocą GLOBK przy użyciu szacowanych pozycji 23 stacji bazowych.

Grybów

- Wszystkie dobowe swobodny rozwiązania za cały okres (tygodnie GPS 1721-1982) są połączone w długoterminowe rozwiązanie z GLORG.
- To długoterminowe rozwiązanie jest dostosowane do ITRF2014 przy użyciu minimalnych ograniczeń dotyczących wszystkich parametrów transformacji z wybranym zestawem stacji referencyjnych EPN.
- O 23 GNSS stacje bazowe zostały wybrane na podstawie dostępności ich danych (co najmniej 80% całkowitego okresu przetwarzania) oraz ich jakości.
- Stacje o znanych lub podejrzewanych odstępach prędkości zostały odrzucone. W procesie iteracyjnym odrzucono również stacje wykazujące duże pozostałości pozycji i prędkości względem ITRF2014. Progi dla współrzędnych ustalono: 0,5 cm w poziomie i 1,5 cm w pionie. Progi dla prędkości resztkowych ustalono odpowiednio na 1,5 mm/rok i 2 mm/rok.

Grybów

Opracowanie

Wyniki

Analiza

Podsumowanie

Tabela "Summary velocity estimates from GLOBK Ver. 5.34" przedstawia przykład odrzucenia stacji RJHE.

Long./ (deg)	Long./ Lat./ (deg) (deg)		E & N Rate/(mm/yr)		N n/yr)	Site	
41.56507	43.78839	25.41	11.52	0.02	0.02	ZECK_4PS*	
37.81146	47.99709	24.45	12.59	0.09	0.10	DNCK_GPS	
23.33779	50.35018	20.69	15.33	0.23	0.29	TOML_GPS	
25.26685	50.91062	19.84	09.76	1.49	1.78	RJHE_GPS	
22.20079	49.55975	20.42	13.28	0.76	0.97	SANO_GPS	

Grybów

 Po otrzymaniu rozwiązania długoterminowego (plik globk.org) utworzono <residual time series> (składników topocentrycznych *E*, *N*, *U*) dla 150 stacji GNSS.

Wyniki

Analiza

Podsumowanie

Opracowanie

- Ich RMS wahają się od 1,5 mm do 2,5 mm dla składowych poziomych.
- Tylko część tych wartości przypisana szumowi danych GNSS, ponieważ duża część czasowej zmienności w <residual time series> jest związana z efektami periodycznymi wywołanymi przez niemodelowane procesy geodynamiczne.

Motywacja

Motywacja Dane Opracowanie Wyniki

Detrended Data by Season

Podsumowanie

Analiza

Residuals by Season

Grybów

Opracowanie

Wyniki

Analiza

Podsumowanie

Grybów

Opracowanie

Wyniki

Analiza

Podsumowanie

- Za pomocą tego polecenia glorg oblicza wektor obrotu (biegun Eulera) bloku (warstwy sferycznej), który zawiera wybrane stacje (punkty), w odniesieniu do stabilizacji układu odniesienia.
- Oryginalny plik ORG zawiera składowe i błędy rotacji wektora i zastępuje regulację prędkości wartościami uzyskanymi podczas stabilizacji z pozostałościami związanymi z płytą proponowaną do włączenia tych punktów.
 Odobnie obliczyliśmy parametry rotacji części płyty

euroazjatyckiej obejmującej Europę Środkowo-Wschodnią.

Motywacja

W tym celu cały zbiór danych został podzielony na cztery sieci stacji GNSS (scenariusze):

Opracowanie

Wyniki

Analiza

- sieć 1 obejmuje wszystkie stacje klasy A zgodnie ze starą klasyfikacją EUREF (scenariusz 1);
- sieć 2 obejmuje wybór wszystkich stacji, które należały do klasy C0 zgodnie z nową klasyfikacją EUREF (scenariusz 2);
- sieć 3 obejmuje wszystkie stacje, które należały do klasy C2 zgodnie z nową klasyfikacją EUREF (scenariusz 3);
- sieć 4 obejmuje wszystkie stacje należące do klasy C0 i C2 zgodnie z nową klasyfikacją EUREF (scenariusz 4).

Motywacja

Grybów

Opracowanie

Wyniki

Analiza

Podsumowanie

Plate rotation vector results

Sites (class A station) used to estimate pole positions

		PLATE				SITES	6				
	EURASIA (Central and Eastern Europe)		POLV_ JOZ2_2	POLV_2PS MIKL_2PS CNIV_3PS IGEO_GPS JOZ2_2PS LAMA_3PS BBYS_4PS BYDG_2PS							
P	LATE	SITES									
TI	RANSLATION	X (mm/yr) -9.30	+- 0.72	Y (mm/yr) 9.89	+- 0.36	Z (mm/yr) 3.43	+- 0.49	RhoXY -0.511	RhoXZ -0.971 0	Rho\ .299	YZ Tran
P	LATE URASIA	Wx (deg/My) 0.027433 0.	+- 002454	Wy (deg/My) -0.069127	+- 0.007492	Wz (deg/My) 0.118801 0	+- .003287	RhoXY -0.040	RhoXZ -0.467 -0	Rho\ .801	YZ XYZ
P El Cl Glo	LATE URASIA hecking co obk Analys	Lat. (deg) 57.953 variance matr is GGVer 10.7	+- 1.985 ix afte 1.019 Mo	Long (deg) -68.354 r equate and on Aug 30 16	+- 2.707 force :01:10 EDT	Mag (deg/My) 0.140160 0 2021	+- .006085	RhoLtLg 0.492	RhoLtMg R -0.844 -0	hoLgMg .841	g LLM

Grybów

Analiza

Parametry obrotu (biegun Eulera) części płyty euroazjatyckiej

Scen.	Φ	Λ	Ω	$\dot{R}1_{E14}$	$\dot{R}2_{E14}$	<i>Ř</i> 3 _{<i>E</i>14}
	(deg)	(deg)	(deg/My)	(deg/My)	(deg/My)	(deg/My)
1	57.953	291.646	0.140160	0.027433	-0.069127	0.118801
	\pm 1.985	\pm 2.707	\pm 0.006085	± 0.002454	±0.007492	±0.003287
2	72.788	292.560	0.158679	-0.039574	-0.025270	0.151572
	\pm 1.561	\pm 3.367	\pm 0.005646	± 0.005245	±0.011158	±0.004305
3	66.980	293.488	0.162969	0.025400	-0.058449	0.149992
	\pm 1.733	\pm 2.616	\pm 0.005182	± 0.002070	±0.006705	±0.003220
4	67.161	293.389	0.162775	0.025080	-0.057988	0.150014
	\pm 1.741	\pm 2.632	\pm 0.005170	± 0.002070	± 0.006705	± 0.003220

8-10 czerwca 2022 r.

Grybów

Na podstawie danych z tabeli **Parametry obrotu** oraz zgodnie ze wzorem

Winiki

Analiza

Podsumowanie

Opracowanie

$$\mathbf{V}_{i} = \mathbf{\Omega} \times \mathbf{X}_{i} = \begin{bmatrix} 0 & -\omega_{Z} & \omega_{Y} \\ \omega_{Z} & 0 & -\omega_{X} \\ -\omega_{Y} & \omega_{X} & 0 \end{bmatrix} \times \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}.$$

obliczyliśmy prędkości zmian współrzędnych 150 punktów GNSS.

Prędkości te porównano z prędkościami "teoretycznymi", które obliczono na podstawie danych w tabeli **Ocena parametrów bieguna Eulera** dla realizacji ITRF2014.

Otrzymane różnice prędkości geocentrycznych zostały przekształcone w różnice topocentryczne ΔV_N i ΔV_E .

Grybów

Motywacja

Analiza

Tabela **Różnice prędkości Środkowo-Wschodniej części eurazjatyckiej płyty tektonicznej** przedstawia średnie różnice prędkości i ich RMS dla czterech wybranych scenariuszy.

Scen.	Sites used	$\Delta \mathbf{V_N} \ [\mathbf{mm}]$	$\Delta \mathbf{V_E} \ [\mathbf{mm}]$
1	23	1.30± 0.88	1.68 ± 0.74
2	8	0.82 ± 0.46	1.16 ± 0.29
3	14	1.11 ± 0.73	1.49 ± 0.63
4	8	1.12 ± 0.74	1.50 ± 1.02

Grybów

 Podjęto próbę zmiany liczby stacji, które uczestniczyły w określonych parametrach Eulera.

Wyniki

Analiza

Podsumowanie

Opracowanie

- Na rysunku Scenariusze takie stacje są pokazane w kolorze czarnym.
- Dla każdego scenariusza pozostawiono odpowiednio 8, 4, 5 i 5 stacji.
- Podczas korzystania z tych stacji parametry rotacji znacznie się zmieniły, ale różnice prędkości pozostały prawie na tym samym poziomie.

Motywacja

 Do przeprowadzenia aprobaty nieklasycznej teorii błędów pomiarowych wybraliśmy 8 stacji GNSS sieci EPN z kategorii C0.

Opracowanie

Wyniki

Analiza

Podsumowanie

- W tym celu wykorzystano szeregi czasowe obserwacji GNSS z lat 2013–2017 pobranych z rozwiązania GAMIT.
- Obliczyliśmy wartości asymetrii, ekscesu i ich standardów, przedziały ufności w celu weryfikacji, czy uzyskane wyniki obserwacji mieszczą się w dopuszczalnej ocenie [Dvulit P. and all.].
- W celu przetestowania hipotezy o podporządkowaniu szeregów czasowych normalnemu prawu rozkładu Gaussa znaleziony również wartości prawdopodobieństw $p(\chi^2)$.

Motywacja

Dvulit P., Savchuk S., Sosonka I. (2020). The processing of GNSS observation by non-classical error theory of measurements. Geodynamics, Vol. 1(28), p. 19-28, DOI: 10.23939/jgd2020.01.019.

Dvulit P., Savchuk S., Sosonka I. (2021). Accuracy estimation of site coordinates derived from GNSS-observations by non-classical error theory of measurements. Geodesy and Geodynamics, Vol.12, Issue 5, DOI:10.1016/j.geog.2021.07.005.

Opracowanie

Motywacja

Dane

Wyniki

Analiza

Podsumowanie

- asymetria we wszystkich przypadkach jest nieznaczna (wahają się odpowiednio od +0.05 do -0.10), a przedziały ufności pokrywają zero tylko w 4 przypadkach na 8;
- jeśli chodzi o ekscesie ε, to najkorzystniejszą sytuację obserwuje się dla stacji JOZ2, UZDL, POLV oraz RIGA a najgorsze – dla BAIA (ε < 0). Permanentne GNSS stacji WTZR, GRAZ i POTS znajduje się w środkowej części pozostałych stacji.
- Normalnie prawdopodobieństwo powinno wynosić $p(\chi^2) > 0.3$ zgodnie z nieklasyczną teorią błędów pomiarowych. Otrzymane prawdopodobieństwo wahają się odpowiednio od 0 do 0.67.
 Grybów 8–10 czerwca 2022 r.

Jeśli ponownie obliczymy parametry rotacji Eulera dla scenariusza 2 bez stacji BAIA i ponownie uzyskamy różnice prędkości to: różnice prędkości ΔV zmniejszyły się nieznacznie pod względem wielkości, ale istotniejszym czynnikiem było znaczne zmniejszenie ich błędów (prawie dwukrotnie).

Wyniki

Analiza

Podsumowanie

Opracowanie

Scen.	Sites used	$\Delta V_{N} [mm]$	$\Delta \mathbf{V}_{\mathbf{E}} \ [\mathbf{mm}]$
2	8	0.82 ± 0.46	1.16 ± 0.29
2	7	0.62 ± 0.21	0.84 ± 0.18

Motywacja

Otrzymane wyniki pokazują, że diagnoza charakterystyk metrologicznych szeregów czasowych obserwacji GNSS metodami nieklasycznej teorii błędów pomiarowych pozwala wiarygodnie ocenić przydatność stacji GNSS do rozwiązywania problemów o najwyższej dokładności, w tym geodynamiki.

Winiki

Analiza

Podsumowanie

Opracowanie

 Oszacowaliśmy biegun Eulera na wybranych stacjach sieci EPN. Małe prędkości resztkowe pokazują, że wybrane stacje w czterech scenariuszach są dobre do oszacowania bieguna Eulera w Europie Środkowej i Wschodniej.

Motywacja

 Obliczone według parametrów Eulera prędkości różnią się nieznacznie (około 1 mm/rok) od oficjalnie publikowanych dla całej euroazjatyckiej płyty tektonicznej. Wskazuje to, że wybrany obszar obraca się prawie sztywno z płytą tektoniczną i prawdopodobnie nie ma własnego ruchu wewnątrz płyty. Inne przyczyny, takie jak różna liczba i rozkład przestrzenny stacji GNSS, mają mniejszy wpływ na różnicę prędkości.

Opracowanie

Analiza

Podsumowanie

- o Testowanie kryterium Pearsona rozkładu normalnego błędów empirycznych dla stacji EPN w kategorii C0 prezentuje następujące wyniki: prawdopodobieństwo, że pomiary są wybrane z normalnego ogólnego sumowania zmieniającego się od 0 do 0.44 dla N, od 0 do 0.67 dla E, od 0 do 0.38 dla komponentu U, co oznacza, że są znacząco oddalone od praktycznych miar (> 0.3). Biorąc pod uwagę ten fakt, przeliczone różnice prędkości ΔV zmieniły się nieznacznie (zmniejszyły się o 25%), jednak doszło do znacznego zmniejszenie ich błędów.
- W przyszłości konieczne jest zidentyfikowanie przyczyn błędów resztowych, które zniekształcają rzeczywiste rozkłady wyników GNSS w celu osiągnięcia właściwych miar asymetrii i ekscesu dokładności rozkładu typu VII Pearsona-Jeffreysa.
 Grybów 8–10 czerwca 2022 r.

Dziękuję za uwagę !

s.savchuk@law.mil.pl

Grybów