

Analiza wpływu interferencji fal wtórnych na obserwacje systemu Galileo

mgr inż. Maciej Grzymała dr inż. Dominik Próchniewicz

Zakład Geodezji i Astronomii Geodezyjnej Wydział Geodezji i Kartografii, Politechnika Warszawska

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju Grybów, 10.06.2022 r.

Politechnika Warszawska

Zgodnie z naszą najlepszą wiedzą, brakuje kompleksowego porównania wielotorowości dla systemów GPS oraz Galileo, zarówno w dziedzinie obserwacji, jak i wyników pozycjonowania, dla wszystkich dostępnych typów obserwacji obu systemów, przy jednakowych warunkach pomiarowych oraz z uwzględnieniem wpływu szumu pomiarowego na dokładność obserwacji.

Cel pracy:

Wyznaczenie wpływu wielotorowości na pomiary kodowe i fazowe systemów Galileo i GPS (z uwzględnieniem wszystkich typów sygnałów) oraz analiza wielkości tego efektu w dziedzinie obserwacji i współrzędnych.

500

化间面 化苯基苯乙基基苯

Przebieg eksperymentu

- Obserwacje zarejestrowane przez dwie stacje: WUT1 i WUT2
- Precyzyjny sprzęt pomiarowy: odbiorniki Septentrio PolaRx5 i anteny typu choke ring
- Obserwacje 1-sekundowe z jednej doby: 180. dzień 2018 r.

System	Signal	Number of Satellites	System	Signal	Number of Satellites
	E1-C	19		L1-C/A	32
	E5a-Q 19	L2C(L)	20		
Galileo	E5b-Q	19	GPS	L2W(P(Y))	32
	E5-Q	19		L5 Q	12
	E6-C	19			

Table 1. Type of observations used in the experiment.

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

Metodyka – wielotorowość dla obserwacji kodowych

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

э. –

Kombinacja kod minus faza, (ang. Code-Minus-Carrier, CMC)

Równania pseudoodległości dla obserwacji kodowych i fazowych:

$$P = \rho + c(\delta t_r - \delta t^s) + \delta O + \delta I + \delta T + M + E$$

 $L = \rho + \lambda N + c(\delta t_r - \delta t^s) + \delta O - \delta I + \delta T + m + \epsilon$

Odjęcie stronami obu równań pozwala wyeliminować wpływ większości z błędów pomiarowych:

 $P - L = -\lambda N + 2\delta I + M + E - m - \epsilon$

Wielkości błędu wielotorowości m i szumu pomiarowego ϵ dla obserwacji fazowych są przynajmniej 1/2 rzędy wielkości mniejsze niż dla obserwacji kodowych, zatem składniki te można pominąć:

$$CMC = P - L = -\lambda N + 2\delta I + M + E$$

Opóźnienie jonosferyczne można wyeliminować z równania wykorzystując obserwacje na dwóch częstotliwościach, a parametr nieoznaczoności wykorzystując średnią ruchomą:

$$\widetilde{CMC} = M + E$$

Kombinacja kod minus faza, (ang. Code-Minus-Carrier, CMC)

 $\widetilde{CMC} = M + E$

Rysunek 1: Wartości kombinacji kod minus faza dla satelitów E01 Galileo i G01 GPS

э

590

Kombinacja kod minus faza, (ang. Code-Minus-Carrier, CMC)

0

Odchylenie standardowe kombinacji kod minus faza zapisać można jako:

$$\sigma_{C\widetilde{M}C}^2 = \sigma_M^2 + \sigma_E^2$$

Ponieważ efekt wielotorowości cechuje się pewną okresowością, jego wpływ jest niezmienny w bardzo krótkich odstępach czasu, możemy przyjąć, że dla sąsiednich epok t_1 , t_2 : $M(t_1) \simeq M(t_2)$. Wykonując różnice kombinacji CMC w czasie, otrzymamy zatem:

$$\Delta \widetilde{CMC}(t_{12}) = E(t_2) - E(t_1)$$

Przyjmując założenie stochastyczne, iż charakterystyka statystyczna szumu pomiarowego w bliskich epokach, jest jednakowa, to odchylenie standardowe szumu dla tych epok będzie również takie samo. Uwzględniając współczynnik czasowy korelacji szumu pomiarowego q zapisać można:

$$\sigma_{\Delta C \widetilde{M} C(t_{12})}^2 = (\sigma_{E(t_2)}^2 + \sigma_{E(t_1)}^2)(1-q) \simeq 2\sigma_E^2(1-q_t)$$

Odchylenie standardowe szumu pomiarowego i wpływu wielotorowości na obserwacje kodowe zapisać można jako:

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

Rysunek 2: Odchylenie standardowe wpływu wielotorowości na obserwacje kodowe, w zależności od elewacji satelitów, dla stacji WUT2

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

э

4.5

Szum obserwacji kodowych

Rysunek 3: Odchylenie standardowe szumu obserwacji kodowych, w zależności od elewacji satelitów, dla stacji WUT2

9/27

э

590

4 E 5

Model empiryczny błędu wielotorowości w funkcji wysokości satelity nad horyzontem

Rysunek 4: Wielotorowość w funkcji elewacji dla Galileo

Rysunek 5: Wielotorowość w funkcji elewacji dla GPS

Tabela 2: Odchylenie standardowe wpływu wielotorowości na obserwacje kodowe, dla wybranych elewacji satelitów

			Galileo			GPS				
	E1C	E5aQ	E5bQ	E5Q	E6C	L1C/A	L2C(L)	L2W	L5Q	
el [°]					σM [n	1]				
15	0.192	0.181	0.192	0.130	0.196	0.223	0.236	0.402	0.197	
30	0.137	0.122	0.140	0.090	0.136	0.153	0.160	0.285	0.137	
80	0.041	0.051	0.054	0.031	0.045	0.047	0.060	0.117	0.062	

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

Sac

э

1 E 1

4 E

Obserwacje kodowe – przestrzenny rozkład błędu wielotorowości 🚳

Rysunek 6: Rozkład przestrzenny błedów wielotorowości obserwacji kodowych dla obserwacji E1C Galileo i L1 C/A GPS. dla pary stacji WUT2

э

1 E 1

4 E

Sac

Metodyka – wielotorowość dla obserwacji fazowych

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

5 4 E 5

1 E

Obserwacje różnicowe na bazie o krótkiej długości

Podwójne różnice obserwacji (DD), residua podwójnych różnic dla bazy o krótkiej długości oraz ich odchylenie standardowe, zapisać można jako:

$$\begin{split} \nabla \Delta L_{ab,f}^{ij} &= \nabla \Delta \rho_{ab}^{ij} + \nabla \Delta \lambda_f N_{ab,f}^{ij} + \nabla \Delta m_{ab,f}^{ij} + \nabla \Delta \epsilon_{ab,f}^{ij} \\ & \widetilde{\nabla \Delta} L_{ab,f}^{ij} = \nabla \Delta m_{ab,f}^{ij} + \nabla \Delta \epsilon_{ab,f}^{ij} \\ & \sigma_{\widetilde{\nabla \Delta} L_{ab,f}^{ij}}^2 = \sigma_{\nabla \Delta m_{ab,f}^{ij}}^2 + \sigma_{\nabla \Delta \epsilon_{ab,f}^{ij}}^2 \end{split}$$

Następnie, przyjmując $\nabla \Delta m_{ab,f}^{ij}(t_1) \simeq \nabla \Delta m_{ab,f}^{ij}(t_2)$, można zapisać potrójne różnice obserwacji fazowych jako:

$$\widetilde{\nabla\Delta}L^{ij}_{ab,f}(t_{12}) = \nabla\Delta\epsilon^{ij}_{ab,f}(t_{12})$$

Przyjmując analogiczne założenia dotyczące szumu pomiarowego co w przypadku obserwacji *CMC*, otrzymamy wartość *STD* potrójnych różnic obserwacji fazowych, które następnie odnieść można do obserwacji nieróżnicowanych:

$$\sigma_{\widetilde{\nabla\Delta}L_{ab,f}^{ij}(t_{12})}^{2} = \sigma_{\widetilde{\nabla\Delta}\epsilon_{ab,f}^{ij}(t_{12})}^{2} (1-q_{t}) \qquad \qquad \sigma_{\epsilon} = \frac{\sigma_{\widetilde{\nabla\Delta}L_{ab,f}^{ij}(t_{12})}^{ij}}{\sqrt{8(1-q_{t})}} \qquad \qquad \sigma_{m} = \sqrt{\sigma_{L}^{2} - \sigma_{\epsilon}^{2}} \qquad (1)$$

$$\sigma_{L} = \frac{\sigma_{\widetilde{\nabla\Delta}L_{ab,f}^{ij}}^{ij}}{2} \qquad \qquad \sigma_{m} = \sqrt{\sigma_{L}^{2} - \sigma_{\epsilon}^{2}} \qquad (1)$$

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

Rysunek 7: Residua podwójnych różnic obserwacji fazowych dla systemu Galileo

э

Identyfikacja źródła dominujących zakłóceń residuów podwójnych różnic obserwacji

Rysunek 8: Rozkład przestrzenny odchylenia *STD* residuów podwójnych różnic obs. fazowych

Tabela 7.3: Zestawienie czasu, elewacji oraz azymutu satelity dla charakterystycznych punktów zakłóceń parametru SNR

	WUT1						WUT2					
	E24			G25			E24			G25		
	t[h]	el[°]	Az[°]									
1.	0,23	8,9	255,6	0,40	14,0	255,8	0,25	9,3	255,9	0,47	15,7	256,9
2.	0,39	11,7	257,8	0,54	17,2	257,7	0,46	13,0	259,0		121	
3.	0,53	14,1	259,9	0,70	20,9	260,2	0,67	16,6	262,1	-	-	

Tabela 7.4: Zestawienie odległości i kierunków od stacji do komina

	wartości	rzeczywiste	wartości wyznaczone na podstawie pomiaru		
	Az[°]	d[m]	Az[°]	d[m]	
WUT1-komin	257,5	94	257,7	100	
WUT2-komin	258,9	90	258,9	95	

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

Wpływ wielotorowości na obserwacje fazowe

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

= nar

Wielotorowość dla nieróżnicowanych obserwacji fazowych

Rysunek 11: Odchylenie standardowe wpływu wielotorowości na obserwacje fazowe, w zależności od elewacji satelitów

э

Sac

Szum obserwacji fazowych

Rysunek 12: Odchylenie standardowe szumu obserwacji fazowych, w zależności od elewacji satelitów

æ

1

Model empiryczny błędu wielotorowości w funkcji wysokości satelity nad horyzontem

Tabela 3: Odchylenie standardowe wpływu wielotorowości na obserwacje fazowe, dla wybranych elewacji satelitów niereferencyjnych

	Galileo						GPS	•		
	E1C	E5aQ	E5bQ	E5Q	E6C	L1C/A	L2C(L)	L2W	L5Q	-
el [°]					<i>σm</i> [m	m]				-
15	2.3	3.2	3.2	3.2	2.9	2.3	3.0	3.2	3.6	
30	1.5	1.7	1.4	1.5	1.1	1.3	1.1	1.4	1.6	-
50	1.0	0.9	0.9	0.8	0.7	1.1	0.9	0.9	1.2	

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

э.

Sar

Analiza falkowa

temy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

20/27

₹ 9Q@

ヘロン 人間 とくほど 人間と

Wpływ wielotorowości z wykorzystaniem transformacji falkowej

Rysunek 15: Łuki obserwacyjne dla analizowanej pary satelitów Galileo E18 i GPS G9

3. Dekompozycja sygnału

4. Maksymalne błędy obserwacji, dla zakłóceń o charakterystycznych dla zjawiska wielotorowości czestotliwościach, wyznaczone na podstawie dekompozycii sygnału

		Tabela 4:	Obserwacje	kodowe			. 1	Fabela 5: F	odwójne r	óżnice obs	erwacji faz	owych	
	0–3 mHz 3–20 mHz 0–20 mHz							0-3 mH	Z	3-20 mHz		0–20 mHz	
	E18	G9	E18	G9	E18	G9		E18	G9	E18	G9	E18	G9
max [m]	0.197	0.320	0.426	0.633	0.462	0.621	max [mm]	6.7	7.7	9.1	9.3	12.3	10.1
min [m]	-0.202	-0.352	-0.586	-0.574	-0.632	-0.813	min [mm]	-2.3	-1.4	-3.0	-3.8	-7.3	-3.5
range [m]	0.399	0.672	1.012	1.207	1.094	1.434	range [mm]	9.0	9.1	12.1	13.1	19.6	13.6

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacie oraz kierunki rozwoju, Grybów 10.06.2022 r.

Systemy odniesień przestrzennych - podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

* ロ > * 伊 > * 글 > * 글 >

Wyniki pozycjonowania

Wpływ wielotorowości z wykorzystaniem transformacji falkowej

Rysunek 16: Wykres Skyplot satelitów Galileo i GPS

Tabela (6: RMS dla wspó	ołrzędnych horyzo	ontalnych
	δn [mm]	δe [mm]	δu [mm]
Galileo	2.1	1.9	10.7
GPS	2.4	1.8	7.6

Rysunek 17: Błąd pozycji dla współrzędnej wysokościowej

Tabela 7:	Maksymalne błę	ly współrzędnej	wysokościowej	spowodowane	wpływem	wielotorowości	sygnału
-----------	----------------	-----------------	---------------	-------------	---------	----------------	---------

	0–3 n	nHz	3-20 1	nHz	0-20 mHz		
	Galileo	GPS	Galileo	GPS	Galileo	GPS	
max [mm]	-2.7	-0.2	-5.1	-3.1	-2.4	1.8	
min [mm]	-20.4	-14.9	-14.9	-10.9	-23.7	-14.7	
range [mm]	17.7	14.7	9.9	7.8	21.3	16.5	

Systemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r.

э

Sac

 $a \equiv b$

Podsumowanie

ystemy odniesień przestrzennych – podstawy geodynamiczne, aktualne realizacje oraz kierunki rozwoju, Grybów 10.06.2022 r

₹ 9Q@

イロト イヨト イヨト イヨト

Podsumowanie

Obserwacje kodowe

- sredni wpływ wielotorowości na poziomie 20–25 cm dla niskich elewacji satelitów
- najmniejsze błędy wielotorowości otrzymano dla obserwacji E5 AltBOC (STD=13 cm, wyniki lepsze o ok. 30% względem pozostałych obserwacji Galileo
- największe błędy wielotorowości otrzymano dla obserwacji L2W GPS (STD=40 cm)
- obserwacje Galileo zapewniają wzrost odporności na zjawisko wielotorowości o ok. 13% względem GPS (bez uwzględnienia obserwacji "odstających" E5 AltBOC i L2W)
- spośród podstawowych obserwacji obu systemów, lepsze wyniki uzyskano dla sygnału E1 Galileo (maksymalne wartości błędów wielotorowości uzyskane na podstawie transformacji falkowej okazują się nawet o ok. 40% mniejsze niż dla kodu C/A GPS)
- system Galileo charakteryzuje się znacznie mniejszym szumem pomiarowym w porównaniu do GPS (różnica o ok. 40% nawet bez uwzględniania obserwacji E5 AltBOC)

= nar

・ 同 ト ・ 三 ト ・ 三 ト

Podsumowanie

Obserwacje fazowe

- średni wpływ wielotorowości na nieróżnicowane obserwacje fazowe dla niskich elewacji satelitów otrzymano na poziomie 2–3,5 mm
- wpływ wielotorowości na obserwacje fazowe zależy wyłącznie od długości fali nośnej nie zauważono różnic pomiędzy obserwacjami systemu Galileo i GPS
- maksymalny wpływ wielotorowości na podwójne różnice obserwacji otrzymano na poziomie 20 mm
- wpływ szumu pomiarowego na poziomie 1–2 mm (dla satelitów wysokich \sim 0,5 mm)

Wyniki pozycjonowania

 różnica pomiędzy wynikami dla Galileo i GPS widoczna wyłącznie dla współrzędnej wysokościowej (wielotorowość powoduje powstawanie zaburzeń o amplitudzie do 21 mm dla Galileo i 17 mm dla GPS)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Dziękuję za uwagę

Maciej Grzymała maciej.grzymala@pw.edu.pl

Praca została zrealizowana w ramach pracy magisterskiej realizowanej na Wydziale GiK PW oraz w ramach projektu Narodowego Centrum Nauki pt. "Modelowanie stochastyczne obserwacji GNSS na potrzeby precyzyjnego pozycjonowania kinematycznego" (2016/23/D/ST10/00498)